What is
JSON:API
and how can
| use it well?

Hi!
[|
| am Mateu

| am here because | am a decoupling
nerd

You can find me at @eOipso

ﬂ

You will learn about...

JSON API Drupal module Extend it
What is it? What's the Solutions to hard
Why use it? status? problems

What are the
limitations?

P e

e, i Defines:

Ilidll: l|1”,
"attributes": {

"title": "Rails is Omakase" I ra n S po r
}r

"relationships": {

o Interactio

"links": {
"self": "/articles/1/relationships/author",
"related": "/articles/l/author"

b
"data": { "type": Ilpeoplell’ l'lidlI: l|9ll }

GET /articles/l/relationships/comments HTTP/1l.1
Accept: application/vnd.api+json

Creative Commons
specification

y

Strongly driven by FE & UX
experts

A

Y I S

this
one?

Since there are others,

and there is GraphQL as
well.

141 repos

That's a lot of traction

18 languages

And a lot of range

’ Client & Server

’ Total success!

/

With a
highlight on
its

Stays neutral on
implementation details and

gives you space. Also
provides extension system.

Response to the typical
problems

Multiple round trip requests
Bloated responses
Content discovery

They all have known solid solutions!

1.
TRANSPORT
FORMAT

The shape of the JSON object

Supporting
Structure
(GLUE)

HATEOAS
&
Metadata
(HYPERMEDIA)

Attributes
&
Relationships
(DATA)

FORMAT

“data”: {
“type”: "articles”,
“jd”: 417,
“attributes”: {..},
“relationships”: {..},

3

“Ainks”: {..},

“meta”: {..}

) FORMAT

“attributes”: {
“title”: “Drupal 8!”,
“body”: “Lorem ipsum”

1y

FORMAT

“relationships”: {
“Uinks”: {

“self”: "articles/1/relationships”

}
“tags”: {
“data”: [{
“type”: “tags”,
“1d”: “2"
3]
}

FORMAT

P
RESOURCE
INTERACTION

How do we get and update
data

Typical request

GET /articles HTTP/1.1
Accept: application/vnd.api+json

V/

RESPONSE

/] sonapi/node/article@

Response to the typical
problems

Multiple round trip requests
Bloated responses
Content discovery

They all have known solid solutions!

The typical solutions

A Multiple round trip requests
@ Resource embedding

A Bloated responses
@ Sparse fieldsets

A Content discovery
@ Collections and filters

EXTREMELY
SIMPLE

Your project will
have way more
stuff than this!

My blog
My cool article m
nih June 6th, 2017

Tags

Comments

Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Nulla quam velit, vulputate eu pharetra nec,
mattis ac neque. Duis vulputate commodo lectus,
ac blandit elit tincidunt id. Sed rhoncus, tortor sed
eleifend tristique, tortor mauris molestie elit, et
lacinia ipsum quam nec dui. Quisque nec mauris

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Mulla quam velit, vulputate eu pharetra nec, mattis ac
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Mulla quam velit, vulputate eu pharetra nec, mattis ac
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Mulla quam velit, vulputate eu pharetra nec, mattis ac

1: GET
2: GET articles/12 => tags/34
3: GET articles/12 => tags/88
4: GET articles/12 => users/88
5: GET articles/12 => users/88 => images/5
6: GET articles/12/comments
7: GET articles/12 => comment/2
8: GET articles/12 => comment/2 => user/8
9: GET articles/12 => comment/2 => user/8 => image/9
10: GET articles/12 => comment/7 [...]
11: GET articles/12 => comment/7 [...]
12: GET articles/12 => comment/7 [...]
MORE!

GET /articles/12?

inc lude=
author, author.pic,
tags,
comment, comment .author,
comment .author.pic

Resource
embedding

GET /articles/12?
fields[articles]=
title,
created

Sparse
fieldsets

“attributes”: {

“title”: “My article”,
et A 2IAL P2 AT
“created”: “10-05-2012",
e atystt "
L e
4] angeode”: “ep”

4

“Give me the cover image and
the publication year of all the
albums of all the bands having
one of the members under 35
currently living in Murcia.

Oh! And while you're at it,
output the name of the band
and that member as well.”

GET /bands?

filter
filter
filter

fields
fields
fields
fields

‘members.city][value]=Murcia&
‘members.age][value]=35&

‘members.age][operator]="<="&
inc lude=albums, albums.cover, membersé&
'bands]=name, albums, members&

 members]=name&

[1mages]=uri

‘albums]=publication&

Collections
and filters

WRITE.
URL
QUERIES

Every APl consumer requests the
resource data it needs. It can be
different every time.

L

J L

* Every consumer has differe
data needs. The server (Drupal)
cannot choose what those are.

Every resource 4
“endpoints”

1. /bands/1234
GET, PUT, PATCH, DELETE
2. /bands
GET, POST
3. /bands/1234/albums
GET
4. /bands/1234/relationships/albums
GET, PATCH

3.
PERFORMANCE

How fast is the Drupal module?

Benchmarking JSON API

ab -v4 -k -c8 -n10 -A u:p
nhode:2100

inc lude
Author
Author image
Tags (2 tags)

Benchmarking core HAL
JSON

ab -v4 -k -c8 -n10 -A u:p
nhode:2100
> user:1105

> file:156 (slow path)
> tagril
> tag+18

y

y

Results (core): anonymous

~ 21 ms

Using Keep Alive

Results (jsonapi):
anonymous

IIJ

node:2100 include:author,author.pic, tags

~ 7 ms

)

Core (ms) {is?rl:‘;a)pi}
Anonymous 21 7
Auth 320 115
Uncached 392 182

https://gist.github.com/e0ipso/
4b1b346b296fbf0c918450fef5b0b3d7

h

g
AVOID *
BOOTSTRAPS

And unnecessary HTTP round trips.

y

iy

4.
DRUPAL
MODULE

Our implementation of the
standard.

@

Oriented to entity bundles

Each resource is a bundle (content
type)

[jsonapi/node/page

Automatically enabled (can be
disabled)

You can do any entity query as filter

Customize your API with
JSON:API Extras

[Inode/page /pages
field_text text
Disable fields

Disable resources

Fields enhancers (preprocessors)

JSON:API cross bundles

Separate contrib

Allows you to have bundles per entity
type:

- https://.../jsonapi/node

- https://.../jsonapi/media

)

JSON:API hypermedia

Enhances support for links
Enables HATEOAS

- Let's you define custom behaviors
about the returned data.

“data”: {
“type”: “product”,
“jd”: “1234-..-abcd”,
3
“1inks”: {
“add-to-cart”: {
“href”: “/purchases”,
“rel”: "add”

HYPERMEDIA

"href": "/purchases",
"rel": "add",
"params": {
"title": "Buy now!",
"confirm": "Yes, I am sure.",
"data": {
"type": "product"”,
"id": 1

} ~
} new

"href": "/wishlist/items",
"rel": "add",
"params": {
"title": "Save for later",
"confirm": false,
"data": {
"type": "product"”,
"id": 1

} ~
} | swelortaer

#

‘Do not have the client app \
’ ChECk the prOdUCtlStOCkAPI _ '.

g

JSON:API Resources

> |1t doesn’t do anything by itself.
> It handles non-entity resources
> For custom rou and ¢ |

- /jsonapi/me

- /jsonapi/user/{id}/reminders

= /jsonapi/node/posts/{id}/refWeet '

/

OpenAPI

The leading standard to describe APis
There is a whole talk about it!

Credits

Special thanks to all the people who
made and released these awesome
resources for free:

Presentation template by

Photographs by

)

http://www.slidescarnival.com/
http://startupstockphotos.com/
https://gist.github.com/e0ipso/7cdae59c167f2e021b485647414364a6

	Slide 1
	Slide 2
	Slide 3
	You will learn about…
	{json:api} paints your bike shed
	Defines: Transport Interaction
	Strongly driven by FE & UX experts
	Why this one?
	Slide 9
	With a highlight on its flexibility
	Slide 11
	Response to the typical problems
	Slide 13
	FORMAT
	FORMAT_clipboard0
	FORMAT
	FORMAT
	Slide 18
	Slide 19
	Typical request
	Response to the typical problems
	The typical solutions
	Slide 23
	Slide 24
	Resource embedding
	Sparse fieldsets
	Slide 27
	Slide 28
	Collections and filters
	Slide 30
	Slide 31
	Every resource 4 “endpoints”
	Slide 33
	Benchmarking JSON API
	Benchmarking core HAL JSON
	Using Keep Alive
	Results (jsonapi): anonymous
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Oriented to entity bundles
	Automatic schema generation
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Schema usages? GENERATE DOCS
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Credits

