
What is
JSON:API

and how can
I use it well?

Hi!
I am Mateu
I am here because I am a decoupling
nerd

You can find me at @e0ipso

Extend it

Solutions to hard
problems

JSON API

What is it?

Why use it?

You will learn about…

Drupal module

What’s the
status?

What are the
limitations?

Stop deciding
unimportant things.

Start working

Defines:
Transport
Interaction

Creative Commons
specification

Steve Klabnik, Yehuda Katz, Dan Gebhardt, Tyler Kellen, Ethan

Resnick

Strongly driven by FE & UX
experts

Why this
one?
Since there are others,
and there is GraphQL as
well.

141 repos
That’s a lot of traction

Client & Server
Total success!

18 languages
And a lot of range

With a
highlight on
its
flexibility
Stays neutral on
implementation details and
gives you space. Also
provides extension system.

Response to the typical
problems

› Multiple round trip requests
› Bloated responses
› Content discovery

They all have known solid solutions!

1.
TRANSPORT

FORMAT
The shape of the JSON object

FORMAT

Supporting
Structure

(GLUE)

Resource
data
Info
(ID)

Attributes
&

Relationships
(DATA)

HATEOAS
&

Metadata
(HYPERMEDIA)

{

“data”: {

“type”: “articles”,

“id”: “1”,

“attributes”: {…},

“relationships”: {…},

},

“links”: {…},

“meta”: {…}

} FORMAT

{

…

“attributes”: {

“title”: “Drupal 8!”,

“body”: “Lorem ipsum”

…

},

…

}
FORMAT

 …

“relationships”: {

“links”: {

“self”: “articles/1/relationships”

},

“tags”: {

“data”: [{

“type”: “tags”,

“id”: “2”

}]

}

… FORMAT

2.
RESOURCE

INTERACTION
How do we get and update

data

Uses REST
GET, POST, PUT, PATCH, DELETE, …

Typical request

GET /articles HTTP/1.1
Accept: application/vnd.api+json

RESPONSE

/jsonapi/node/article

Response to the typical
problems

› Multiple round trip requests
› Bloated responses
› Content discovery

They all have known solid solutions!

The typical solutions

› Multiple round trip requests
› Resource embedding

› Bloated responses
› Sparse fieldsets

› Content discovery
› Collections and filters

Place your screenshot here

EXTREMELY
SIMPLE

Your project will
have way more
stuff than this!

› 1: GET articles/12
› 2: GET articles/12 => tags/34
› 3: GET articles/12 => tags/88
› 4: GET articles/12 => users/88
› 5: GET articles/12 => users/88 => images/5
› 6: GET articles/12/comments
› 7: GET articles/12 => comment/2
› 8: GET articles/12 => comment/2 => user/8
› 9: GET articles/12 => comment/2 => user/8 => image/9
› 10: GET articles/12 => comment/7 […]
› 11: GET articles/12 => comment/7 […]
› 12: GET articles/12 => comment/7 […]
› MORE!

GET /articles/12?

include=

 author,author.pic,

 tags,

 comment,comment.author,

 comment.author.pic

Resource
embedding

GET /articles/12?

fields[articles]=

 title,

 created

Sparse
fieldsets

…

“attributes”: {

 “title”: “My article”,

 “uuid”: “12345-1234-34”,

 “created”: “10-05-2012”,

 “status”: “1”,

 “body”: {…},

 “langcode”: “en”

}

…

“Give me the cover image and
the publication year of all the
albums of all the bands having
one of the members under 35

currently living in Murcia.

Oh! And while you're at it,
output the name of the band
and that member as well.”

GET /bands?

filter[members.city][value]=Murcia&

filter[members.age][value]=35&

filter[members.age][operator]=”<=”&

include=albums,albums.cover,members&

fields[bands]=name,albums,members&

fields[members]=name&

fields[albums]=publication&

fields[images]=uri

Collections
and filters

Every API consumer requests the
resource data it needs. It can be
different every time.

WRITE
URL
QUERIES

Every consumer has different
data needs. The server (Drupal)
cannot choose what those are.

1. /bands/1234
› GET, PUT, PATCH, DELETE

2. /bands
› GET, POST

3. /bands/1234/albums
› GET

4. /bands/1234/relationships/albums
› GET, PATCH

Every resource 4
“endpoints”

3.
PERFORMANCE

How fast is the Drupal module?

Benchmarking JSON API

› ab -v4 -k -c8 -n10 -A u:p
› node:2100
› include

› Author
› Author image

› Tags (2 tags)

Benchmarking core HAL
JSON

› ab -v4 -k -c8 -n10 -A u:p
› node:2100

› user:1105
› file:156 (slow path)

› tag:11
› tag:18

Results (core): anonymous

user:1105

node:2100

file:156

tag:11

tag:18

~ 21 ms

Using Keep Alive

Results (jsonapi):
anonymous

user:1105

node:2100

file:156

tag:11

tag:18

~ 7 ms

node:2100 include:author,author.pic,tags

Core (ms) {json:api}
(ms)

Anonymous 21 7

Auth 320 115

Uncached 392 182

https://gist.github.com/e0ipso/
4b1b346b296fbf0c918450fef5b0b3d7

AVOID
BOOTSTRAPS
And unnecessary HTTP round trips.

4.
DRUPAL
MODULE

Our implementation of the
standard.

It is in Drupal core!
💎️

Oriented to entity bundles

› Each resource is a bundle (content
type)

› /jsonapi/node/page
› Automatically enabled (can be

disabled)
› You can do any entity query as filter

Customize your API with
JSON:API Extras

› /node/page /pages➡️
› field_text text➡️
› Disable fields 🚫️
› Disable resources ⛔️
› Fields enhancers (preprocessors) 💅️

JSON:API cross bundles

› Separate contrib
› Allows you to have bundles per entity

type:
– https://.../jsonapi/node
– https://.../jsonapi/media

JSON:API hypermedia

› Enhances support for links
› Enables HATEOAS

– Let’s you define custom behaviors
about the returned data.

{

 “data”: {

 “type”: “product”,

 “id”: “1234-…-abcd”,

 },

 “links”: {

 “add-to-cart”: {

 “href”: “/purchases”,

 “rel”: “add”

 …

HYPERMEDIA

{

 "href": "/purchases",

 "rel": "add",

 "params": {

 "title": "Buy now!",

 "confirm": "Yes, I am sure.",

 "data": {

 "type": "product",

 "id": 1

 }

 }

}
Buy now!Buy now!

{

 "href": "/wishlist/items",

 "rel": "add",

 "params": {

 "title": "Save for later",

 "confirm": false,

 "data": {

 "type": "product",

 "id": 1

 }

 }

}
Save for laterSave for later

Do not have the client app
check the product stock API

JSON:API Resources

› It doesn’t do anything by itself.
› It handles non-entity resources .🎊️
› For custom routes and data.

– /jsonapi/me

– /jsonapi/user/{id}/reminders

– /jsonapi/node/posts/{id}/retweet

OpenAPI

› The leading standard to describe APis
› There is a whole talk about it!

Credits

Special thanks to all the people who
made and released these awesome
resources for free:

› Presentation template by
SlidesCarnival

› Photographs by Startupstockphotos
› Creative Commons images

http://www.slidescarnival.com/
http://startupstockphotos.com/
https://gist.github.com/e0ipso/7cdae59c167f2e021b485647414364a6

	Slide 1
	Slide 2
	Slide 3
	You will learn about…
	{json:api} paints your bike shed
	Defines: Transport Interaction
	Strongly driven by FE & UX experts
	Why this one?
	Slide 9
	With a highlight on its flexibility
	Slide 11
	Response to the typical problems
	Slide 13
	FORMAT
	FORMAT_clipboard0
	FORMAT
	FORMAT
	Slide 18
	Slide 19
	Typical request
	Response to the typical problems
	The typical solutions
	Slide 23
	Slide 24
	Resource embedding
	Sparse fieldsets
	Slide 27
	Slide 28
	Collections and filters
	Slide 30
	Slide 31
	Every resource 4 “endpoints”
	Slide 33
	Benchmarking JSON API
	Benchmarking core HAL JSON
	Using Keep Alive
	Results (jsonapi): anonymous
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Oriented to entity bundles
	Automatic schema generation
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Schema usages? GENERATE DOCS
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Credits

